Abstract
Si-based resistive random access memory (RRAM) devices at the nanoscale with high uniformity have great potential applications in the future. We demonstrate that the uniformity evolution of the a-SiNx:H RRAM at the low resistance state (LRS) and the high resistance state (HRS) can be clearly monitored by presetting a Si dangling bond (Si-DB) conductive pathway through thermal energy. It is found that the increased magnitude of uniformity for the LRS and the HRS are determined by the number of preset Si-DBs, which can be controlled by tuning thermal energy. As for LRS, the Si-DBs produced under the electric field along with the preset Si-DB conductive pathways form the main conductive pathway. Theoretical calculation of current–voltage (I–V) curves indicates that the Si-DB conductive pathways obey the trap-assisted tunneling model. In the HRS, the preset Si-DBs induced by thermal energy are the unique source of the conductive pathway. The transmission mechanism involves a trap-to-trap process by the hopping of electrons under a low electric field, Poole–Frenkel emission in the main region under the medium electric field and Fowler–Nordheim tunneling under the high electric field. Our discovery of the uniformity evolution for a-SiNx:H RRAM device through presetting the Si-DB conductive pathway provides new insight into the resistive switching mechanism of next generation Si-based RRAM devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.