Abstract

Processor virtualization is a technique in which a programmer divides a computation into many entities, which are mapped to the available processors. The number of these entities, referred to as virtual processors, is typically larger than the number of physical processors. For an MPI program, the user decomposes the computation into more MPI tasks than physical processors. This approach allows overlapping computation and communication, and enables load balancing. User-level threads are often used to implement these virtual processors because they are generally faster to create, manage and migrate than heavy processes or kernel threads. However, these threads present issues concerning private data because they break the private address space assumption typically made by MPI programs. In this paper, we propose a new approach to privatize data in user-level threads. This approach is based on thread-local storage (TLS), which is often used by kernel threads. We apply this technique so that MPI programs can be executed in a virtualized environment while preserving their original semantics. We show that this alternative has a more efficient context switch and lower migration cost and is simpler to implement than other approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.