Abstract
As autonomous robotic systems integrate into various domains, ensuring their safe operation becomes increasingly crucial. A key challenge is guaranteeing safe decision making for cyber-physical systems, given the inherent complexity and uncertainty of real-world environments.Tools like Gwendolen, vGOAL, and Tumato enable the use of formal methods to provide guarantees for correct and safe decision making. This paper concerns Tumato, a formal planning framework that generates complete behavior from a declarative specification. Tumato ensures safety by avoiding unsafe actions and states while achieving robustness by considering nondeterministic outcomes of actions. While formal methods claim to manage complexity, provide safety guarantees, and ensure robustness, empirical evaluation is necessary to validate these claims.This work presents an empirical study comparing the characteristics of various ad hoc behavior planning implementations (developed by participants with diverse levels of experience in computer science), with implementations using Tumato. We investigate the usability of the different approaches and evaluate i) their effectiveness, ii) the achieved safety (guarantees), iii) their robustness in handling uncertainties, and iv) their adaptability, extensibility, and scalability. To our knowledge, this is the first participant-based empirical study of a formal approach for (safe and robust) autonomous behavior.Our analysis confirms that while ad hoc methods offer some development flexibility, they lack the rigorous safety guarantees provided by formal methods. The study supports the hypothesis that formal methods, as implemented in Tumato, are effective tools for developing safe autonomous systems, particularly in managing complexity and ensuring robust decision making and planning.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.