Abstract

Xinyu tangerine is a citrus fruit that has enjoyed great popularity in China for its fewer dregs and abundant nutrients. However, it is considered an easily perishable fruit that is vulnerable to various pathogenic fungal infections, especially by Penicillium italicum, which reduces its storage life and commercial value. Normally, to reduce the losses caused by fungal deterioration of harvested fruit, polysaccharide-based edible coating, containing natural antimicrobial agents (e.g., plant extracts), have been applied. In current study, we evaluated the effects of Ficus hirta Vahl. fruits extract (FFE)–incorporated chitosan (CS) edible coating on Xinyu tangerines during cold storage at 5 °C. The results showed FFE has efficacy as an antifungal against P. italicum in a dose-dependent manner in vivo, with an EC50 value of 12.543 mg·mL−1. It was found that the edible coating of FFE–CS exhibited a higher reduction of total soluble solid (TSS), titrable acid (TA), and ascorbic acid (AsA) content by reducing the fruit decay rate, weight loss, respiration rate, and malondialdehyde (MDA) content during cold storage at 5 °C. Moreover, the activities of protective enzyme such as superoxide dismutase (SOD), peroxidase (POD), and phenylalanine ammonia-lyase (PAL), which have been linked with reactive oxygen species (ROS) and the phenylpropanoid pathway, were higher in the FFE–CS-coated fruits. On the basis of these study results, the FFE–CS edible coating could reduce postharvest loss and enhance the storability of Xinyu tangerines due to the in vivo antifungal activity of FFE.

Highlights

  • The aims of the current study were to investigate the in vivo antifungal efficacy of Ficus hirta Vahl. fruits extract (FFE) for controlling blue mold caused by P. italicum in citrus fruit, and to evaluate the preservation effect of FFE incorporated into CS-based edible coatings on harvested Xinyu tangerines during cold storage

  • The mycelia growth inhibition (MGI) of blue mold in FFE-treated (20, 10, 5, and 2.5 mg/mL) Xinyu tangerines were 63.68%, 42.34%, 24.96%, and 17.38%, which indicates that FFE possessed strong antifungal efficacy and efficiently inhibited in vivo mycelial growth of P. italicum in a dose-dependent manner (Figure 1C)

  • Treatments with FFE at different concentrations demonstrated its in vivo antifungal efficacy for controlling blue mold in citrus fruit caused by P. italicum

Read more

Summary

Introduction

39, a local mandarin bred from ‘běn dì zǎo’ (Citrus reticulata Blanco) cv. The fruits are highly susceptible to fungal pathogen infection and mechanical injury during storage due to their rich nutritional content and tender peel. The harvested Xinyu tangerines have a high respiration rate and water loss, and are attacked by pathogens at room temperature [1,2]. For these reasons, Xinyu tangerines usually have short shelf-life and quick deterioration of nutrients, which seriously reduces their storability and postharvest fruit quality. It is necessary to develop effective preservation strategies for this important fruit crop

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.