Abstract
This paper presents the results and conclusions obtained from new GPS data compiled along the El Salvador Fault Zone (ESFZ). We calculated a GPS-derived horizontal velocity field representing the present-day crustal deformation rates in the ESFZ based on the analysis of 30 GPS campaign stations of the ZFESNet network, measured over a 4.5year period from 2007 to 2012. The velocity field and subsequent strain rate analysis clearly indicate dextral strike–slip tectonics with extensional component throughout the ESFZ. Our results suggest that the boundary between the Salvadoran forearc and Caribbean blocks is a deformation zone which varies along the fault zone. We estimate that the movement between the two blocks is at least ~12mmyr−1. From west to east, this movement is variably distributed between faults or segments of the ESFZ. We propose a kinematic model with three main blocks; the Western, Central and Eastern blocks delimited by major faults. For the first time, we were able to provide a quantitative measure of the present-day horizontal geodetic slip rate of the main segments of ESFZ, ranging from ~2mmyr−1 in the east segment to ~8mmyr−1, in the west and central segments. This study contributes new kinematic and slip rate data that should be used to update and improve the seismic hazard assessments in northern Central America.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.