Abstract

Long-term planning is one of the most important stages that determines the distribution of cash flows over the mine life and the feasibility of the project. However, it is not feasible in block caving to generate a production schedule that will provide optimal operating strategies without considering geotechnical constraints. This paper develops a mixed-integer linear programming (MILP) model to optimize the extraction sequence of drawpoints over multiple time horizons of block-cave mines with respect to the draw control systems. A multi-similarity index clustering technique to solve the MILP model in a reasonable time is also presented. Application and comparison of production scheduling based on the draw control system and clustering technique are illustrated using 325 drawpoints over 15 periods. The results show a significant reduction in the size of the MILP model, and in the time required to solve it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.