Abstract

Sphere templating is an attractive method to produce porous polymeric scaffolds with well-defined and uniform pore structures for applications in tissue engineering. While high porosity is desired to facilitate cell seeding and enhance nutrient transport, the incorporation of pores will impact gross mechanical properties of tissue scaffolds and will likely be dependent on pore size. The goals of this study were to evaluate the effect of pores, pore diameter, and polymer composition on gross mechanical properties of hydrogels prepared from crosslinked poly(ethylene glycol) (PEG) and poly(2-hydroxyethyl methacrylate) (pHEMA). Sphere templates were fabricated from uncrosslinked poly(methyl methacrylate) spheres sieved between 53-63 and 150-180 μm. Incorporating pores into hydrogels significantly decreased the quasi-static modulus and ultimate tensile stress, but increased the ultimate tensile strain. For pHEMA, decreases in gel crosslinking density and increases in pore diameters followed similar trends. Interestingly, the mechanical properties of porous PEG hydrogels were less sensitive to changes in pore diameter for a given polymer composition. Additionally, pore diameter was shown to affect skeletal myoblast adhesion whereby many cells cultured in porous hydrogels with smaller pores were seen spanning across multiple pores, but lined the inside of larger pores. In summary, incorporation of pores and changes in pore diameter significantly affect the gross mechanical properties, but in a manner that is dependent on gel chemistry, structure, and composition. Together, these findings will help to design better hydrogel scaffolds for applications where gross mechanical properties and porosity are critical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.