Abstract

Southern rice black-streaked dwarf virus (SRBSDV), a new member of the genus Fijivirus, is a double-stranded RNA virus known to lack poly(A) tails. We now showed that some of SRBSDV mRNAs were indeed polyadenylated at the 3' terminus in plant hosts, and investigated the nature of 3' poly(A) tails. The non-abundant presence of SRBSDV mRNAs bearing polyadenylate tails suggested that these viral RNA were subjected to polyadenylation-stimulated degradation. The discovery of poly(A) tails in different families of viruses implies potentially a wide occurrence of the polyadenylation-assisted RNA degradation in viruses.

Highlights

  • RNA of many eukaryotic viruses, ranging from DNA to RNA viruses, have 3' poly(A) tails [1], which are synthesized posttranscriptionally, and by direct transcription from the poly(U)stretched template strand [2,3,4,5]

  • The polyadenylate tails were found in Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Odontoglossum ring-spot virus (ORSV), Cucumber green mottle mosaic virus (CGMMV), Tobacco rattle virus (TRV), Turnip crinkle virus (TCV) and Tobacco necrosis virus (TNV) [9], seven positive-strand RNA viruses known to lack poly(A) tails and terminate 3'-termini with tRNA-like structure (TLS) or non-TLS heteropolymeric sequence [6]

  • The poly(A) and poly(A)-rich tails were first reported at the 3'-termini of the mRNAs of a dsRNA virus, Southern rice black-streaked dwarf virus (SRBSDV), generally recognized to lack poly(A) tails

Read more

Summary

Introduction

RNA of many eukaryotic viruses, ranging from DNA to RNA viruses, have 3' poly(A) tails [1], which are synthesized posttranscriptionally, and by direct transcription from the poly(U)stretched template strand [2,3,4,5]. The viral mRNA containing poly(A) or poly(A)-rich tails were detected in HeLa cells infected with Vaccinia virus (a double-stranded [ds] DNA virus) [8]. In previous experiments, all 13 ORFs of the 10 RNA segments could be amplified via RT-PCR using oligo(dT)18 to prime cDNA synthesis as templates [19], suggesting that each SRBSDV

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.