Abstract
Rice black-streaked dwarf virus (RBSDV) and Southern rice black-streaked dwarf virus (SRBSDV) cause maize rough dwarf disease (MRDD) and rice black-streaked dwarf disease (RBSDD) in China. RBSDV segment 8 (S8) contains the only deletion mutation in the genomes of these viruses, which are both members of the genus Fijivirus. To illuminate the molecular differences between the RBSDV and SRBSDV genomes and better understand the evolution of these viruses, and to determine which virus is specifically associated with MRDD and RBSDD in each region, S8 was analyzed in 66 virus isolates collected from 10 geographic locations in China and 14 S8 sequences obtained from the National Center for Biotechnology Information GenBank. Phylogenetic analysis showed that the pathogen associated with MRDD and RBSDD in the Yellow and Huai River valleys was RBSDV, whereas the pathogen associated with these diseases in Sanya was SRBSDV. Codon usage bias in S8 differed significantly between RBSDV and SRBSDV, as indicated by effective number of codons used by a gene (Nc) and GC values, Nc plots, and variation explained by the first axis in correspondence analysis. The nucleotide identities among these 66 RBSDV and SRBSDV isolates ranged from 66.2 to 68.2%, and were considerably lower than the nucleotide identities within RBSDV (from 94.1 to 99.9%) or SRBSDV (from 93.9 to 100%) isolates. Most S8 polymorphisms were identified in the region from 1,000 to 1,200 bp in RBSDV and in the region from 500 to 700 bp in SRBSDV. The difference in the lengths of RBSDV (1,936 bp) and SRBSDV (1,928 bp) was due to an 8-bp deletion in the 3'-untranslated region of SRBSDV. Six recombination events were detected in S8 in RBSDV and two recombination events were detected in S8 in SRBSDV. Recombination breakpoints were found within the region containing the deletion mutation in nine isolates. However, no recombination events were detected between RBSDV and SRBSDV. Both of these viruses were under negative and purifying selection, although the ratio of nonsynonymous mutations to synonymous mutations (Ka/Ks) for RBSDV S8 (0.0530) was not significantly lower than that of SRBSDV S8 (0.0823, P = 0.1550). We found that SRBSDV was more highly genetically differentiated (product of effective population size and the migration rate among populations < 1; values for the among-populations component of genetic variation or normalized variation > 0.33; and P values of the sequence statistic, the rank statistic, and the nearest-neighbor statistic < 0.01) than RBSDV. However, gene flow between RBSDV and SRBSDV was not frequent.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have