Abstract

Plants live in close association with microbial organisms that inhabit the environment in which they grow. Much recent work has aimed to characterize these plant-microbiome interactions, identifying those associations that increase growth. Although most work has focused on terrestrial plants, Lemna minor, a floating aquatic angiosperm, is increasingly used as a model in host-microbe interactions and many bacterial associations have been shown to play an important role in supporting plant fitness. However, the ubiquity and stability of these interactions as well as their dependence on specific abiotic environmental conditions remain unclear. Here, we assess the impact of a full L. minor microbiome on plant fitness and phenotype by assaying plants from eight natural sites, with and without their microbiomes, over a range of abiotic environmental conditions. We find that the microbiome systematically suppressed plant fitness, although the magnitude of this effect varied among plant genotypes and depended on the abiotic environment. Presence of the microbiome also resulted in phenotypic changes, with plants forming smaller colonies and producing smaller fronds and shorter roots. Differences in phenotype among plant genotypes were reduced when the microbiome was removed, as were genotype by environment interactions, suggesting that the microbiome plays a role in mediating the plant phenotypic response to the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.