Abstract

The macrobenthic community in shallow soft‐bottom areas in the Bay of Ancón, Peru, is characterised by low biodiversity due to low oxygen concentrations. During El Niño events, higher temperature and higher concentrations of dissolved oxygen induce a temporary increase in biodiversity. However, the structure and dynamics of the emerging communities vary strongly among events. The reasons for this variation are poorly understood, in particular the relative influence of abiotic vs biotic factors. To disentangle the roles of abiotic and biotic factors, population models based on detailed monitoring data of three El Niño events were developed focused on the population dynamics of one species in the community, the polychaete Sigambra bassi, which showed different responses in different El Niño events. Calculated and observed population dynamics are compared using root mean square deviation (RMSD). The results show that S. bassi abundance can be determined by abiotic environmental conditions. Besides, three biotic factors improved model performance in different El Niño events: negative density dependence in larval settlement, lower carrying capacity in the presence of other species and positive density dependence in adult survival. The results demonstrate how population models can be used to decode information hidden in long‐term monitoring data of abiotic and biotic community parameters about factors driving population dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.