Abstract

The aim of this study was to explore the community diversity and abundance of nitrate-dependent anaerobic methane oxidizing archaea, Candidatus Methanoperedens nitroreducens, in sewage sludge from wastewater treatment plants. Seasonal sampling of the sewage sludge was carried out from two wastewater treatment plants (WWTPs) located in the northern and southern parts of China. Through amplicon sequencing using our newly designed primers, a large number of Candidatus Methanoperedens nitroreducens-like (M. nitroreducens) archaeal sequences (638743) were generated. These sequences were assigned into 742 operational protein units (OPUs) at 90% cut-off level and classified as Group B member of M. nitroreducens archaea in the phylogenetic tree. More than 80% of the OPUs were not shared between these two WWTPs, showing the M. nitroreducens-like archaeal community in each WWTP was unique. Quantitative PCR assays also confirmed the presence of M. nitroreducens-like archaea and revealed a higher abundance in autumn and winter than other seasons, indicating that the environmental attributes in these seasons might favour the growth of this archaea. Further redundancy analysis revealed that volatile solid and pH were the significant environmental attributes (P<0·05) in shaping the M. nitroreducens-like archaeal community based on variance inflation factor selection and Monte Carlo permutation test. The results confirmed the presence of diverse M. nitroreducens-like archaea in sewage sludge using Illumina-based mcrA gene sequencing and quantitative PCR assays. The results of this study revealed the ecological characteristics of M. nitroreducens-like archaea in sewage sludge that improved our understanding of nitrate-dependent anaerobic methane oxidation process and may be the basis for future application of M. nitroreducens-like archaea for new nitrogen removal in WWTPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.