Abstract

Regulating the intensity distribution of an extended source to produce a prescribed illumination in three-dimensional (3D) rotationally symmetric geometry remains a challenging issue in illumination design. In this Letter, we present an effective method focusing on creating prescribed intensity designs for extended sources. By this method, a prescribed 3D intensity design is first converted into a two-dimensional intensity design for the extended source, a new approach is used to calculate the initial patch to generate a more stable design, and then a feedback strategy is employed to improve the performance of the aspherical lens in 3D rotational geometry. Three examples are presented to demonstrate the effectiveness of the proposed method in terms of performance and capacity for tackling complex designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.