Abstract

Due to nearly zero leakage power consumption, non-volatile magnetoresistive random access memory (MRAM) is becoming one of the promising candidates for replacing conventional volatile memories (e.g. SRAM and DRAM). In particular, emerging spin-orbit torque (SOT) MRAM is considered to outperform spin-transfer torque (STT) MRAM due to its fast switching, separate read/write paths, and lower energy dissipation. However, the SOT-MRAM technology is still in its infancy; one key design challenge is that the control of SOT-MRAM, which involves three terminals, is more complicated compared with STT-MRAM. In this paper, we propose a novel MRAM write scheme called PRESCOTT1, where the "1" and "0" data values can be written into memory cells through the SOT and STT, respectively. As a result, the write current is unidirectional rather than bi-directional, which addresses the control complexity. Using this unidirectional write scheme, we design a PreSET-based cross-point (CP) MRAM to improve programing speed, write energy dissipation and storage density compared to conventional MRAM. Circuit simulation results demonstrate that our PreSET-based CP MRAM can achieve around 67.14% average write energy reduction and 50.86% improvement in programming speed, compared with CP STT-MRAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call