Abstract

Eocene carbonate deposits of the Barru area, Sulawesi, Indonesia, provide a rare insight into sedimentation prior to and during propagation of normal faults to the surface. Three main successions; late prerift, latest prerift/earliest synrift and synrift, are characterised by distinctive facies associations and sequence development. Shallow water foraminiferal shoals and intervening lower energy depositional environments occurred during the late prerift in areas which latter formed footwall highs and hangingwall depocentres, respectively. During the latest prerift/earliest synrift, shallow water shelves deepened laterally into slope environments in developing hangingwall depocentres. In both these sequences, sections in developing hangingwall areas are thickest, deepen up-section and thin laterally towards growing footwall highs. Active faulting resulted in rapid drowning of hangingwall depocentres and massive reworking of material derived from collapse of the platform margin and adjacent shallow water/emergent footwall highs. Differential subsidence, controlling water depths and accommodation space, types of carbonate producers and active faulting were the main factors affecting depositional environments and facies distributions. Carbonate producers are extremely sensitive indicators of depositional water depth and energy, hence rapid lateral and vertical facies variations in the Barru area provide quantifiable insight into environmental changes prior to and during active faulting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call