Abstract
Transplant shock is caused by various types of abiotic stress, limiting stand establishment and productivity of many vegetable crops. Although postplanting stress can be minimized under well-managed field conditions, mechanical stress is unavoidable during the transport and transplanting of seedlings. Mechanical stress stimulates ethylene production, which in turn, induces overall growth retardation as a stress adaptation strategy. We hypothesized that, under optimum field conditions, transplant shock is caused primarily by ethylene-induced stress responses, and that inhibiting ethylene action can reduce transplant shock by maintaining uninterrupted growth. In this study, a new spray formulation of 1-methylcyclopropene (1-MCP) was used to inhibit ethylene perception in tomato (Solanum lycopersicum L.) seedlings. A bioassay experiment demonstrated reduced ethylene sensitivity in 1-MCP–treated (1 mg·L−1) seedlings using leaf epinasty and chlorosis as measured responses. Field experiments evaluated growth, physiological, and yield responses to preplant spray treatment of 1-MCP (12.5–50 mg·L−1) under optimum field conditions. Postplanting growth modulation by 1-MCP at the flowering stage was characterized by enhanced height growth and suppressed stem diameter growth, indicating the inhibition of ethylene-induced stress responses. At the fruit harvest stage, preplant 1-MCP treatment increased shoot biomass by 23% and flower production by 22%, while improving photosynthetic capacity on a whole-plant basis. As a result, 1-MCP–treated plants produced 13% to 24% higher total marketable fruit yields than untreated plants in two consecutive growing seasons. Correlation analyses revealed that flower number increased proportionally to shoot biomass, and marketable fruit number increased proportionally to flower number. These results support our hypothesis and propose that preplant 1-MCP treatment is a new stress-management approach to reducing transplant shock. Importantly, this new technique is easily implementable by commercial transplant nurseries with no negative side effect on transplant quality and fruit development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have