Abstract

A superabsorbent polymer, Sodium Alginate-g-Poly (Itaconic acid-co-Sodium 4-vinyl benzenesulfonate)/ Ricinus communis (SA-g-P(ITA-co-VBS)/ RC) hydrogel, was prepared by free-radical graft co-polymerization for sequestration of toxic malachite green (MG) dye as a cationic dye model. The surface morphological of shape and composition of the prepared hydrogel used have been characterized by FESEM, EDX, TEM, FTIR, X-ray diffraction XRD, and TGA. Optimizing the synthesis conditions for prepared a hydrogel with the highest swelling ratio have been studied, the results show that employing 0.08 g KPS and 0.09 g MBA, 1.0 g ITA, 2.0 g VBS, 1.0 g SA, and 1.0 g RC, the composites greatest swelling capacity in distilled water was 3400 %. It was discovered that the dye adsorption capacity of the polymer was greatly impacted by the monomer VBS level in the hydrogel, which gives it a better ability to swell. The porosity of the hydrogel spheres, thus significantly enhancing the MG adsorption capacity with the rate-limiting controlled by chemical adsorption, intraparticle diffusion, and film diffusion. Study the influence of different reaction conditions on the removal of MG dye from aqueous solution are adsorbent dose, pH, zero-point charge, temperature, thermodynamic adsorption, adsorption isotherm, and kinetic models have been done. Additionally, (SA-g-P(ITA-co-VBS)/RC) demonstrated strong MG dye adsorption capabilities and reusability in at least four adsorption-desorption cycles this process indicating its considerable potential for use as the adsorbent for dye removals from aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call