Abstract
The perovskite scintillators have been extensively studied recently for their merits of tunable emission spectra and simple preparation processes. However, the practical applications of perovskite scintillator-based X-ray image sensor are still impeded by inadequate radioluminescence, poor environmental stability, and low imaging resolution. Herein, we demonstrate a scalable co-firing method to fabricate high-quality lead-free Cs3Cu2I5 perovskite scintillator and an Indium (In)-doping strategy is introduced to enhance its radioluminescence performance at the same time. The In-doped Cs3Cu2I5 obtains a high PLQY of 77.9% and a relative light output of 53372 ph/MeV, which are 0.34 and 1.08 times higher than those of the undoped counterpart, respectively. The X-ray detection limit of the In:Cs3Cu2I5 can reach 150.55 nGyair/s, 36.53 times lower than the requirement for X-ray medical diagnosis. The synthesized scintillator also shows superior stability under continuous high dose X-ray irradiation of 6800 μGyair/s for 120 minutes, maintaining 95% of its initial radioluminescence intensity. Furthermore, a large-area (300 cm2) flexible perovskite scintillator film is prepared, which owns a much competitive resolution of 10 lp/mm and less distortion in X-ray imaging. This work provides a practical path for the wide application of perovskite scintillator in the field of X-ray detection and imaging in near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.