Abstract
Magnesium oxide (MgO) nanoparticles are commonly used to enhance the reactivity and performance of devices and systems in various applications, primarily due to the heat-resistance, binding, and alkaline properties of MgO. However, most of the methods used to synthesize MgO nanoparticles suffer from nonuniform particle size distributions that make it difficult to manufacture stable particles. In this study, uniform magnesium oxide (MgO) nanoparticles were developed for TiO2 photoelectrodes of dye-sensitized solar cells (DSSCs) to enhance their interfacial resistances. The uniform MgO nanoparticles were synthesized from MgO 93% using a poly(acrylic acid) template-assisted method. The particle size and crystalline structure of MgO nanoparticles were characterized by NANOPHOX particle size analysis, transmission electron microscopy, and X-ray diffraction. Multilayered TiO2 photoelectrodes containing interlayers of MgO nanoparticles were fabricated as photoelectrodes for DSSC devices, and their photovoltaic performances were investigated. When the MgO interlayer was introduced into the multilayered TiO2 photoelectrode, it not only increased the photocurrent value of the DSSC device but also improved its power conversion efficiency. The DSSC device containing the MgO interlayer and the scattering layer exhibited an open-circuit voltage of 0.74 V, a short-circuit current density of 14.60 mA/cm2, and a fill factor of 0.64 under a photointensity of 100 mW/cm2 at AM 1.5, resulting in an overall solar energy conversion efficiency of 6.94%. The application of an MgO interlayer in a DSSC device exhibited improved conductivity, charge transfer ability, and excellent device performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have