Abstract

Tilapia skin collagen was hydrolyzed by five proteases (trypsin, pepsin, neutral protease, alkaline protease and protamex). The results showed that the tilapia skin collagen hydrolysate (TSCH) obtained by 2 h hydrolysis with trypsin exhibited the highest iron chelating rate. The TSCH was then separated by immobilized metal affinity chromatography (IMAC-Fe2+) and obtained the tilapia skin collagen iron-chelating peptides (TSCICP). The iron chelating sites of TSCICP were corresponding to carboxylic groups of Asp/Glu and guanidine nitrogen of Arg/Lys. After chelated with iron ions, TSCICP was folded and aggregated to form spherical particles with increased particle size. The TSCICP-iron complexes could maintain high iron solubility at various pH and in simulated gastrointestinal digestion. The iron bio-accessibility of TSCICP-iron complexes was high than that of ferrous glycinate and ferrous sulfate. Finally, TSCICP was purified by RP-HPLC and identified by LC-MS/MS. Four iron-chelating peptides were identified as GPAGPAGEK (782.39 Da), DGPSGPKGDR (984.46 Da), GLPGPSGEEGKR (1198.59 Da) and DGPSGPKGDRGETGL (1441.68 Da). These results indicating that the iron-chelating peptides derived from tilapia skin collagen could be used as potential dietary iron supplement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.