Abstract

ABSTRACTDesired bone repair biomaterial must have good biocompatibility and suitable mechanical properties that are equivalent to those of human bones. In this study, multi-walled carbon nanotubes (MWCNTS) was designed to incorporate into bioactive glass/poly(etheretherketone) to fabricate a composite of multi-walled carbon nanotubes/bioactive glass/poly(etheretherketone) (MWCNTS/BG/PEEK) through a compounding and injection-molding process. The microstructures, mechanical properties, thermal stability and bioactivity of the ternary biocomposite, as well as preliminary cell responses of MC3T3-E1 osteoblast cells to this biomaterial, were investigated. The mechanical performance of ternary MWCNTS/BG/PEEK composite was vastly superior to binary BG/PEEK composite. More importantly, cell culture tests showed that cell adhesion, viability and differentiation of MC3T3-E1 cells were significantly promoted on the MWCNTS/BG/PEEK composite. Moreover, it was found that MWCNTS in composite further promoted cell metabolic vitality and osteogenic differentiation of osteoblast cells. Hence, this MWCNTS/BG/PEEK biomaterial may be used as a promising bone graft scaffold in dental and orthopedic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call