Abstract

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.

Highlights

  • Nanofibers are fibers with diameters in the nanometer range

  • The of the solution resultedresulted in randomly distributeddistributed cylindrical

  • It is revealed that a rise in calcination temperature from 500 to 1100 ◦ C induces transformation of mesoporous t-ZrO2 nanofibers with a high specific surface area (102.3 m2 /g) to non-porous m-ZrO2 nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2 /g)

Read more

Summary

Introduction

Nanofibers are fibers with diameters in the nanometer range. They attract a great deal of attention due to their remarkable properties compared to their microfiber counterparts, namely high surface area, high surface-to-mass ratio, interconnected porous structure, and flexibility in surface functionalization [1].Among a number of nanofiber fabrication techniques, electrospinning is the most commonly used method due to its simplicity, adaptability, cost-efficiency, and versatility, as well as the capability to control the diameter, composition, and morphology of filaments. Nanofibers are fibers with diameters in the nanometer range. They attract a great deal of attention due to their remarkable properties compared to their microfiber counterparts, namely high surface area, high surface-to-mass ratio, interconnected porous structure, and flexibility in surface functionalization [1]. Among a number of nanofiber fabrication techniques, electrospinning is the most commonly used method due to its simplicity, adaptability, cost-efficiency, and versatility, as well as the capability to control the diameter, composition, and morphology of filaments. Electrospinning can be used for the production of ceramic nanofibers. This process includes the following stages: Preparation of a spinnable solution containing the ceramic precursor and a binding polymer; spinning of the prepared solution; calcination of the electrospun composite fibers to remove unwanted constituents and to obtain the desired ceramic phase; and sintering at an elevated temperature to fabricate the final ceramic nanofibers with the required structure [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.