Abstract
Y3Fe5O12 microspheres having a 20–32 μm diameter range were prepared by a spray dryer using a bead‐milled nanosize powder. The high heat generation ability in an AC magnetic field was obtained by the bead milling of a commercial powder. The yield of the 20–32 μm microspheres was 13.5% after sifting using 20 and 32 μm sieves. The heat generation ability of the microsphere sample was almost the same as that for the bead‐milled powder because the temperature enhancement mechanism was the Néel relaxation of the superparamagnetic material. Furthermore, the heat generation ability of the Y3Fe5O12 microsphere was improved by calcination at low temperature. The heat ability increased as a function proportional to the square of the increasing magnetic field for the noncalcined sample and the samples calcined at 600°C. For the samples calcined at 650°C or higher, the heat generation ability increased as a function proportional to the cube of the increasing magnetic field because of the particle growth to form single‐domain ferrimagnetic particles. The sample calcined at 650°C showed the maximum heat generation ability(W/g) of 2.4·f·H3, where f and H are the frequency (kHz) and magnetic field (kA/m), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.