Abstract
Poly(styrene-co-acrylonitrile) (PSAN)-capped ZnO nanoparticles (NPs) were synthesized by a "ligand exchange" method. First, octylamine (OA)-capped ZnO NPs were prepared by reaction of OA and zinc 2-ethylhexanoate (Zn(EH)2). Then PSAN polymer ligands were synthesized by activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) and were efficiently exchanged with OA ligands on the ZnO particle surface benefiting from the relatively low boiling point of OA (175 °C). The morphology, content of ZnO, and grafting density of the nanocomposite were well controlled by altering the ratio between OA and polymer ligands as well as the molecular weight of PSAN-NH2 used in the exchange reaction. The resulting ZnO/polymer nanocomposites were stable in THF with narrow size distributions and varying grafting densities from 0.9 to 2.5 nm-2. With excess amount of polymer ligands, individual dispersed ZnO NPs were observed. However, with a limited amount of ligands, NPs clusters were formed, as confirmed by TEM and DLS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.