Abstract
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V2O5, was mixed with various concentrations (0.8 M, 1.2 M, 1.6 M, 2.0 M) of citric acid (CA) as the reducing agent and stirred for 60 min at 90 °C using a hot plate to ensure complete dispersion in the solution. The resulting solution was subsequently subjected to a hydrothermal reduction reaction (HRR) furnace at 150 °C for 24 h to generate vanadium (3.5+). The mixed states of the produced vanadium (3+) and vanadium (4+) were confirmed using UV-vis spectroscopy. The electrochemical properties of the electrolyte were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), revealing that the optimal concentration of the CA was 1.6 M. The current efficiency, energy efficiency, and voltage efficiency of the electrolyte produced via the HRR process was compared with that prepared using VOSO4 in charge and discharge experiments. The results demonstrate that the HRR process yields an enhanced electrolyte across all efficiency metrics produced through the given improved performance in all efficiencies. These findings indicate that the HRR process using citric acid can facilitate the straightforward preparation of vanadium (3.5+) electrolyte, making it suitable for large-scale production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.