Abstract

The complex double-membrane organization of the envelope in Gram-negative bacteria places unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on cytoplasm facing leaflet of cytoplasmic (inner) membrane (IM), across IM and between IM and outer membrane (OM). Uniformly oriented inside-out (ISO) vesicles became functional requisite for many biochemical reconstitution functional assays, vectorial proteomics, and vectoriallipidomics. Due to these demands, it is necessary to develop simple and reliable approaches for preparation of uniformly oriented IM membrane vesicles and validation of their sidedness. The uniformly ISO oriented membrane vesicles which have the cytoplasmic face of the membrane on the outside and the periplasmic side facing the sealed lumen can be obtained following intact cell disruption by a single passage through a French pressure cell (French press) at desired total pressure. Although high-pressure lysis leads to the formation of mostly inverted membrane vesicles (designated and abbreviated usually as ISO vesicles, everted or inverted membrane vesicles (IMVs)), inconclusive results are quite common. This uncertainty is due mainly by applying a different pressures, using either intact cells or spheroplasts and presence or absence of sucrose during rupture procedure. Many E. coli envelope fractionation techniques result in heterogeneity among isolated IM membrane vesicles. In part, this is due to difficulties in simple validation of sidedness of oriented membrane preparations of unknown sidedness. The sidedness of various preparations of membrane vesicles can be inferred from the orientation of residing uniformly oriented transmembrane protein. We outline the method in which the orientation of membrane vesicles can be verified by mapping of uniform or mixed topologies of essential protein E. coli protein leader peptidase (LepB) by advanced SCAMâ„¢. Although the protocol discussed in this chapter has been developed using Escherichia coli and Yersinia pseudotuberculosis, it can be directly adapted to other Gram-negative bacteria including pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.