Abstract

The bactericidal/permeability-increasing protein (BPI) of polymorphonuclear leukocytes is a potent bactericidal agent specific for gram-negative bacteria. The protein blocks bacterial multiplication without substantially inhibiting the uptake and incorporation of macromolecular precursors, suggesting that the cytoplasmic membrane escapes early injury. Because greater than 90% of bound BPI can be removed from the bacterial surface sites after irreversible loss of viability, it was uncertain whether BPI reaches the cytoplasmic membrane and, if so, affects its functions. This study shows that BPI caused similar dose-dependent inhibition of O2 consumption and metabolic energy-dependent amino acid transport by cytoplasmic membrane vesicles of both gram-negative (Escherichia coli) and gram-positive (Bacillus subtilis) bacteria. Near maximal inhibition occurred at BPI doses that caused complete killing of an equivalent number of intact E. coli, with binding of BPI to membrane vesicles that was less than or equal to 10% of binding to intact (BPI-sensitive) bacteria. The effects of BPI and of the membrane-disruptive peptide antibiotic polymyxin B on membrane vesicles were distinctly different, indicating that the two agents affect membrane function by different mechanisms. BPI also rapidly inhibited O2 consumption by intact E. coli, with minimal impairment of bacterial protein synthesis. Thus, BPI is capable of damaging the cytoplasmic membrane of both gram-negative and gram-positive bacteria and of inhibiting at least one cytoplasmic membrane-associated function in intact E. coli. The relationship between these effects and the mechanism of bacterial killing by BPI remains to be established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.