Abstract

MOFs are usually used as efficient adsorbents to remove specific pollutants in water. However, because of their poor water stability relatively small particle size, their application in adsorbing and removing pollutants from water is limited. In this paper, with nitrile rubber sponge as the substrate, UiO-66-NH2/sponge composites were firstly in-situ synthesized and systematically evaluated UiO-66-NH2 as an adsorbent to remove 2,4-dichlorophenoxyacetic acid from water. This composite could not only remain the adsorption capacity for 2,4-dichlorophenoxyacetic acid of UiO-66-NH2, but also was much more convenient for separation after the adsorption compared to UiO-66-NH2. In addition, the mechanism of the adsorption of UiO-66-NH2 for 2,4-dichlorophenoxyacetic acid were discussed in detail. Electrostatic interaction between UiO-66-NH2 and 2,4-dichlorophenoxyacetic acid was the main adsorption mechanism. The adsorption was mainly suitable for Langmuir isotherm models, and its maximum adsorption capacity of 2,4-dichlorophenoxyacetic acid was 72.99mgg-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.