Abstract

AbstractTiO2 is a widely used photocatalytic antibacterial material and shows good antibacterial properties under ultraviolet light. However, its antibacterial efficacy under visible light still remains limited. To develop low‐cost and biocompatible antibacterial materials, this article provides a facile method for in situ preparation of a trace amount of silver (Ag) doped TiO2 nanorods (TiO2NR–Ag) composites, which cannot only enhance the antibacterial properties under visible light, but also has good biocompatibility. Two representative epidemic strains, Staphylococcus aureus and Escherichia coli, are selected for analysis of the antibacterial properties of the obtained TiO2NR–Ag composite nanoparticles. The results demonstrate that even if the Ag doping level is as low as 2.5 × 10−4 wt% (i.e., Ag/TiO2 = 2.50 µg g−1), the TiO2NR–Ag composite nanoparticle coatings are transparent and exhibit exceptional antibacterial properties, which is attributed to synergistic enhanced bactericidal effect of the active substances generated by TiO2NR–Ag under visible light. The cytotoxicity and hemolysis rate results indicate that TiO2NR–Ag composite exhibit excellent biocompatibility. This study effectively improves the antibacterial effect of TiO2 photocatalytic nanomaterials while maintaining their biocompatibility, and the prepared TiO2NR–Ag composite nanoparticles can be applied in various fields such as window glasses, medical device surfaces, furniture surfaces, and optical devices, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call