Abstract

AbstractTextile industry wastewater contaminated with dye effluents poses a significant environmental challenge. Numerous nanoparticles are used as adsorbents to treat similarly stimulated wastewater, but particularly nanomaterials synthesized through green methods have gained prominence. To assess their practical applicability in addressing real‐world textile wastewater pollution, studies on dye removal from authentic textile industrial effluents are recommended. As a result, a study focused on the removal of dye from real textile industrial effluent is conducted, and biosynthesized copper oxide nanoparticles and iron oxide nanorods are chosen as adsorbents. The investigation scrutinized the influence of adsorbent dosage, adsorbent‐adsorbate contact time, and wastewater pH on the percentage of dye adsorption. These findings indicate that increasing the adsorbent dosage and contact time leads to a higher percentage of dye removal. Notably, copper oxide nanoparticles exhibit superior dye removal efficiency at pH levels 5 and 7, outperforming the maximum dye removal efficiency of iron oxide nanorods at pH 12. The study achieved an impressive process efficiency of 95.24% for copper oxide nanoparticles and 62.5% for iron oxide nanorods. Response surface methodology (RSM) is employed for statistical data analysis and optimization of dye removal process parameters to maximize efficiency. Overall, the results demonstrate that biosynthesized nanomaterials offer a promising and effective solution for removing dyes from textile industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.