Abstract

ABSTRACT In this study, the preparation of thermally stable organic-inorganic hybrid nanocomposites from chemically functionalized oxidized graphite is carried out by in-situ catalytic oxidative decarboxylation of 3,5-dinitrobenzoic acid (reactant) in the presence of potassium persulfate (oxidant), silver nitrate (catalyst) and graphite (support) under thermal or microwave conditions. The effects of heat transfer and dosages of reactant, catalyst and oxidant on the crystalline structure and the morphology of nanocomposites are studied in detail. The prepared nanocomposites are characterized by EDS, elemental mapping, FE-SEM, FT-IR and XRD. The thermal stability of nanocomposites is examined by TGA and DSC. EDS shows that nanocomposites are composed of C, O, N, S, K and Ag elements. FT-IR exhibits that the graphitic layers in nanocomposites are mainly oxidized and functionalized with carboxyl, carbonyl, hydroxyl, epoxy, sulfate, nitrate and nitroaryl groups. Addition of nitroaryl groups to nanocomposites is also supported by an increase found in their C and N contents. XRD demonstrates the coexistence of both oxidized amorphous carbon and graphite in combination with different levels of organic and inorganic phases. The prepared nanocomposites show good thermal stability. The total area of the DSC curve in these nanocomposites compared to graphite is enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call