Abstract

Polymer-clay nanocomposites are extensively investigated as they are economical in comparison with other nanofillers and drastically enhances various physical and engineering properties of polymers. Among various clays used for polymer-nanocomposites, Halloysite nanotubes (HNTs) have gained tremendous attention as they have unique structure and properties. In the present work we have successfully synthesised polystyrene-HNT nanocomposites by ultrasound assisted solution intercalation method. In this method solvent plays a very crucial role in enhancing the overall properties of resultant nanocomposites as arrangement of filler in the polymer matrix depends upon how well the solvent is able to disperse filler which inturn enhances polymer properties. Hence in this work solvents toluene, benzene, chloroform, dichoromethane (DCM), tetrahydrofuran (THF) and carbontetrachloride (CCl4) were used for synthesis of nanocomposites and effect of these solvent on structure, morphology and thermal stability of nanocomposites was investigated. As per the characterization analysis, toluene was found to be the best solvent for synthesis of nanocomposites with enhanced properties and use of ultrasound aided in uniform distribution of clay in polymer matrix. Increase in basal spacing on sonication was revealed by x-ray diffraction (XRD) analyses. Scanning electron microscopy (SEM) results revealed uniform dispersion of filler inside the matrix on using acoustic cavitation as it promotes proportionate distribution of filler into the polymer matrix. Fourier transform and infrared (FT-IR) results confirmed encapsulation of HNTs into polymer. Differential scanning calorimetry (DSC) reports illustrated increase in glass transition temperature (Tg) on incorporating HNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.