Abstract

Abstract A lot of attention has been given to incorporation of nano-sized oxides including Fe2O3 in ammonium perchlorate (NH4ClO4, AP)-based solid propellants to enhance their final performance. In the present work, spherical nano-Fe2O3/AP composites were successfully produced by crystallization/agglomeration of AP combined with reactive crystallization of nano-Fe2O3. The synthesized nano-Fe2O3 particles were confirmed to be hematite by XRD, FTIR and Raman. The SEM image showed that the nano-Fe2O3 particles with an average size of 46 nm are deposited on the surface of AP. The catalytic effect of nano-Fe2O3 particles on the thermal decomposition of AP may be explained by TGA data: a majority of the nano-Fe2O3/AP composites are completely decomposed at lower temperature and their decomposition rate of AP is shown to be remarkably enhanced. Furthermore, the activation energy indicates that the existence of nano-Fe2O3 particles is able to reduce the energy barrier associated with an autocatalytic reaction from 130.3 to 86.7 kJ/mol, which ultimately leads to a decrease in the onset temperature of decomposition of AP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call