Abstract

Catalytically active gold model catalysts have been designed via “size-controlled” gold colloids of 2-nm mean particle size. They were prepared by reduction of chloroauric acid with tetrakis(hydroxymethyl)phosphonium chloride in an alkaline solution, followed by adsorption of gold colloids on TiO2and ZrO2at a pH lower than the isoelectric point of the metal oxides. Investigation of the size of the gold particles in solution by UV-vis spectrophotometry in combination with HRTEM indicated that the gold colloids are rather stable in alkaline solution, during pH-change and purification with dialysis. Ageing of the solutions showed that the particle size slowly increased over a time scale of 4 months. Analysis of the dried catalysts by XRD and HRTEM corroborated that the particle size was nearly preserved during the immobilization process. Only in the case of high loadings (16.6 wt%, compared to the calculated nominal monolayer coverage of 45–55 wt%), incomplete adsorption occurred, affording more inhomogeneous dispersion and some aggregation. After calcination at 673 K, both zirconia- and titania-based catalysts containing 1.7 wt% Au exhibited high activity in low temperature CO oxidation. Although the particle size on both supports was comparable, the Au/TiO2catalyst showed significantly higher activity than the Au/ZrO2catalyst. The uncalcined Au/TiO2also exhibited high activity, whereas the uncalcined Au/ZrO2was inactive under the same conditions, corroborating that not only the gold particle size but also the support plays a key role in CO oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.