Abstract

The SrCeO3-based electrolyte pellet is one of the most commonly used materials in electrolyte research since the introduction of proton-conducting solid oxide fuel cell at intermediate temperatures. Electrolyte Sr0.6Ba0.4Ce0.9Ga0.1O3-δ (SBCG) has been produced by the glycine-nitrate method as it is found to produce fine powders in a short time and support in lowering sintering temperatures. A systematic characterization has been carried out on the electrolyte powders to determine properties such as thermal decomposition (thermogravimetric analysis, TGA), purity of the electrolyte powders (X-ray diffraction, XRD) and elemental analysis via X-ray energy distribution (EDX). Further, morphological characterization of the electrolyte pellets was conducted using scanning electron microscopy (SEM). TGA recorded the decomposition of the selective compounds was completed at a temperature of 1000°C. Based on the three calcination temperatures of 900°C, 1000°C and 1100°C, the powders calcined at 1000 °C were found to be eligible for the sintering process in the production of electrolyte pellet. This electrolyte pellet achieved a relative density of 99%. In addition, the pellet calcined at 1000 °C also displayed distinctive grain boundary despite having a wide range of grain sizes. Based on this study, Sr0.6Ba0.4Ce0.9Ga0.1O3-δ has been shown to have great potential to be used as an electrolyte for the application of proton-conducting solid oxide fuel cells at intermediate temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call