Abstract

Sr0.6Ba0.4Ce0.9Pr0.1O3-δ is synthesized by the glycine–nitrate method. The synthesized powder and resultant electrolyte pellet are systematically characterised for proton-conducting solid oxide fuel cell application. The thermal decomposition and purity of the electrolyte powder were analysed by thermogravimetric analysis (TGA) and X-ray diffraction (XRD), respectively. The morphological structure and chemical stability of the electrolyte pellets are examined by field-emission scanning electron microscopy (FESEM) and XRD, respectively. The selective material decomposes at 1000 °C as recorded by TGA. The calcined powder at 1000 °C is used to produce the electrolyte pellet. The pellet sintered at 1400 °C achieves the average relative density of 94% as measured by Archimedes’ method and displays good grain growth with a visible grain boundary. The chemical stability of the pellet is also determined under boiling water for 2 h. The tolerance towards H2O for the sample improved with the presence of Sr upon exposure to boiling water even though some amorphous phase forms. Based on the result, Sr0.6Ba0.4Ce0.9Pr0.1O3-δ is considered as a potential electrolyte for proton-conducting solid oxide fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call