Abstract

In this study, three different types of ZrO2 films were prepared with different precursors and additives using the sol-gel method. High-temperature annealing was implemented to investigate the impact of temperature on optical properties, microstructure, surface morphologies and absorption of these films. According to the laser-induced damage threshold (LIDT) tests on films having experienced annealing and those implemented with in-situ high temperature, the ZrO2 film with ZrOCl2·8H2O as the precursor and copolymer of silicone and polyaldoxyl ether as the additive had the highest resistance to laser-induced damage. After annealing at 623 K, its LIDT was 21.4 J/cm2, while that at an in-situ high temperature of 523 K was 23.9 J/cm2. The strong high temperature resistance was likely attributed to the usage of carbon-free precursor and high temperature-resistant additive, which contributed to low carbon contents and less structural damage caused by organic matter evaporation. In this context, there were less high temperature-induced impurity and structural defects, leading to higher LIDT values. This study provided a novel method for preparing high temperature-resistant sol-gel films, which shed light upon wider potential application of sol-gel films at high-temperature conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call