Abstract
The vacuum impregnation assisted sol–gel technique is a promising and environmentally-friendly method for the inorganic modification of wood by the formation of wood-inorganic composites. However, vacuum impregnation is relatively cumbersome and time-consuming. In this study, SiO2–wood composites were prepared by an ultrasonic-assisted sol–gel method, which is an innovative and simple method. Using this method, we found an increase in the degree of silicon incorporation into the cell walls of the wood. The impregnation of silica inside the cell walls were verified by Fourier-transform infrared spectra, X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Leaching test proved that the internal cross-linking silica is stably bonded to the wood cell walls. This modified method significantly reduced the hygroscopicity of the wood and consequently improved the mechanical performance of the modified wood. Thermogravimetric and differential thermal analyses showed that the incorporation of silicon retards thermal decomposition and the complete combustion of the wood matrix and it enhances the thermal stability of wood.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have