Abstract

Silica aerogel, the most common type of aerogels, comprised of 95% air in its structure which made the aerogel has a high surface area, high porosity, low density, and low thermal conductivity. Because of its structure and high porosity, one of its major weakness compared to other materials is being very brittle. This study aims at strengthening the connection points between silica nanoparticles using Pluronic10R5 (poly(propylene oxide)8–poly(ethylene oxide)22–poly(propylene oxide)8) where the Pluronic10R5 was used to reduce phase separation during the silica condensation reaction in the sol–gel process. Silica aerogel monoliths were prepared via a sol–gel process from hydrophobic silica gels and Pluronic10R5 with an ambient pressure drying (APD) process. Results from the compression test showed that the Pluronic10R5/silica aerogels have improved mechanical property by ten times that of unmodified silica aerogels. A thermogravimetric analysis (TGA) showed a mass loss at 300–400 °C that is attributed to the surface methyl group, while a mass loss at 200 °C refers to the loss of Pluronic10R5 which confirms the incorporation of Pluronic10R5 into the monolith. Moreover, infrared (IR) images revealed that the top surface temperature of Pluronic10R5/silica aerogels monolith is about 80 °C differs from the bottom heat source temperature of 160 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call