Abstract

Porous carbon nanofibers are commonly used for adsorption processes owing to their high specific surface area and rich pore structure. However, the poor mechanical properties of polyacrylonitrile (PAN)-based porous carbon nanofibers have limited their applications. Herein, we introduced solid waste-derived oxidized coal liquefaction residue (OCLR) into PAN-based nanofibers to obtain activated reinforced porous carbon nanofibers (ARCNF) with enhanced mechanical properties and regeneration for efficient adsorption of organic dyes in wastewater. This study examined the effects of contact time, concentration, temperature, pH, and salinity on the adsorption capacity. The adsorption processes of the dyes in ARCNF are appropriately described by the pseudo-second-order kinetic model. The maximum adsorption capacity for malachite green (MG) on ARCNF is 2712.84 mg g-1 according to the fitted parameters of the Langmuir model. Adsorption thermodynamics indicated that the adsorptions of the five dyes are spontaneous and endothermic processes. In addition, ARCNF have good regenerative performance, and the adsorption capacity of MG is still higher than 76% after 5 adsorption-desorption cycles. Our prepared ARCNF can efficiently adsorb organic dyes in wastewater, reducing the pollution to the environment and providing a new idea for solid waste recycling and water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call