Abstract

Oxygenases catalyze crucial reactions throughout all domains of life, cleaving molecular oxygen (O2) and inserting one or two of its atoms into organic substrates. Many oxygenases, including those in the cytochrome P450 (P450) and Rieske oxygenase enzyme families, function as multicomponent systems, which require one or more redox partners to transfer electrons to the catalytic center. As the identity of the reductase can change the reactivity of the oxygenase, characterization of the latter with its cognate redox partners is critical. However, the isolation of the native redox partner or partners is often challenging. Here, we report the preparation and characterization of PbdB, the native reductase partner of PbdA, a bacterial P450 enzyme that catalyzes the O-demethylation of para-methoxylated benzoates. Through production in a rhodoccocal host, codon optimization, and anaerobic purification, this procedure overcomes conventional challenges in redox partner production and allows for robust oxygenase characterization with its native redox partner. Key lessons learned here, including the value of production in a related host and rare codon effects are applicable to a broad range of Fe-dependent oxygenases and their components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.