Abstract
RBSC composites are fully dense materials fabricated by infiltration of compacted mixtures of silicon carbide and carbon by molten silicon. Free carbon is usually added in the form of an organic resin that undergoes subsequent pyrolysis. The environmentally unfriendly pyrolysis process and the presence of residual silicon are serious drawbacks of this process. The study describes an alternative approach that minimizes the residual silicon fraction by making use of a multimodal particle size distribution, in order to increase the green density of the preforms prior infiltration. The addition of boron carbide provides an alternative source of carbon, thereby eliminating the need for pyrolized organic compounds. The residual silicon fraction in the RBSC composites, prepared according to the novel processing route, is significantly reduced. Their mechanical properties, in particular the specific flexural strength is by 15% higher than the value reported for RBSC composites prepared by the conventional approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.