Abstract

Strontium, the main component of radioactive nuclear wastewater, is characterized by a high fission yield and an extended half-life. It is easily absorbed by the human body, thus greatly threatening the environment and the human body. In this study, a mesoporous composite phase sodium superionic conductor (NVP@NMP) was synthesized by the droplet template method, and the rapid capture of Sr2+ from wastewater was achieved by constructing a nano-heterogeneous interface to increase the ion diffusion rate. NVP@NMP showed efficient and rapid removal of strontium ions in adsorption kinetics, isothermal adsorption, solution pH, and interfering ions concentration tests, especially using the equilibrium time of 2 min for strontium absorption by NVP@NMP and a maximum theoretical adsorption capacity of 361.36 mg/g. The adsorption process was spontaneous, endothermic, and feasible. At higher concentrations of other competing ions (Na, K, Ca, Mg, and Cs), the adsorbent exhibited higher selectivity towards Sr2+.TEM, XPS, and XRD analyses revealed that ion exchange was the main mechanism for the NVP@NMP ultrafast adsorption of Sr2+. In this research, we investigated the feasibility of ultrafast strontium capture by sodium superionic conductor structured phosphates and explained the ultrafast strontium adsorption mechanism of NASICON materials through XPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call