Abstract

Highly porous carbon electrodes for supercapacitors with high energy storage performance were prepared by using a new precursor blend of aromatic polyimide (PI) and polyvinylidene fluoride (PVDF). Supercapacitor electrodes were prepared through the electrospinning and thermal treatment of the precursor blends of aromatic PI and PVDF. Microstructures of the carbonized PI/PVDF nanofibers were studied using Raman spectroscopy. Nitrogen adsorption/desorption measurements confirmed their high surface area and porosity, which is critical for supercapacitor performance. Energy storage performance was investigated and carbonized PI/PVDF showed a high specific capacitance of 283 F/g at 10 mV/s (37% higher than that of PI) and an energy density of 11.3 Wh/kg at 0.5 A/g (27% higher than that of PI) with high cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.