Abstract

Polymer/clay nanocomposites exhibit desirable performance and multifunctional properties. The ideal dispersion and exfoliation of clay layers in polymeric matrixes is a significant drawback that affects its application. In this study, a novel extruder generating a continuous elongation flow was used to fabricate the representative polypropylene (PP)/organic montmorillonite (OMMT) nanocomposites and then compare with the twin-screw extruder (TSE). Phase morphology, dynamic rheological properties, and mechanical properties were characterized by thermal gravimetric analysis, wide-angle X-ray diffraction, transmission electron microscopy, rotational rheometer and impact tests. The morphology and rheological behavior of the nanocomposites evidenced that ideal intercalation or/and exfoliation dispersion of OMMT in PP matrixes can be achieved under continuous elongation flow. Thus, the double-side exfoliation of the OMMT platelets combined with the pulling/diffusion process under an elongation flow is leading to an effective strengthening and toughening of PP better than that in the TSE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.