Abstract

ABSTRACTA novel processing technique that employs continuous elongational flow to fabricate polymer/clay nanocomposites has been developed and evaluated in this work. A self-made vane mixer has been used to supply the continuous elongational flow, while high-density polyethylene (HDPE) and organic montmorillonite (O-MMT) were used as the polymer matrix and clay, respectively. The morphology of resultant nanocomposites has been carefully revealed and studied by examining wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Intercalation effect and dispersion of O-MMT layers have been investigated by the morphology study. The results indicate that the elongational flow has a great potential in melt intercalation of O-MMT, and can lead to an orderly O-MMT layers’ distribution. Thermal properties of as-mixed nanocomposites that prepared under elongational flow have been determined by the differential scanning calorimetry (DSC), which demonstrates that the introduction of O-MMT nano-sheets is bad for the crystal of HDPE matrix. The universal tensile test shows how O-MMT layers affect the mechanical properties of nanocomposites, including the tensile strength and elongation at break. The strain–stress relationship reveals that with continually adding O-MMT layers, the tensile strength increases at first, and then decreases. While the elongation at break shows the same trend.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call