Abstract

Fused Deposition Modelling (FDM) 3D printers have gained significant popularity in the pharmaceutical and biomedical industries. In this study, a new biomaterial filament was developed by preparing a polylactic acid (PLA)/calcium peroxide (CPO) composite using wet solution mixing and extrusion. The content of CPO varied from 3% to 24% wt., and hot-melt extruder parameters were optimised to fabricate 3D printable composite filaments. The filaments were characterised using an X-ray diffraction analysis, surface morphology assessment, evaluation of filament extrudability, microstructural analysis, and examination of their rheological and mechanical properties. Our findings indicate that increasing the CPO content resulted in increased viscosity at 200 °C, while the PLA/CPO samples showed microstructural changes from crystalline to amorphous. The mechanical strength and ductility of the composite filaments decreased except for in the 6% CPO filament. Due to its acceptable surface morphology and strength, the PLA/CPO filament with 6% CPO was selected for printability testing. The 3D-printed sample of a bone scaffold exhibited good printing quality, demonstrating the potential of the PLA/CPO filament as an improved biocompatible filament for FDM 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.