Abstract

Objective Inflammation is a natural response of the organism, involving events responsible for releasing chemical mediators and requiring treatments of symptoms such as pain, redness, heat, swelling, and loss of tissue function. Piroxicam (PRX) is a non-steroidal anti-inflammatory drug with the effect of nonselective COX inhibitor activity; however, it shows poor bioavailability caused by the poor and slow water solubility. In this study, we developed PRX nanosuspensions with 200–500 nm in diameter to increase the bioavailability of PRX by improving its solubility. Methods PRX nanosuspensions were fabricated by High pressure homogenization method with PVA, SDS and Tween 80. The nanosuspensions were characterized by XRD, FTIR, DSC, and in vitro release. In vivo pharmacokinetic properties and anti-inflammatory effects were also investigated in rabbits. Results PRX nanosuspensions significantly increased the solubility (14.89 ± 0.03 mg/L for pure PRX and 16.75 ± 0.05 mg/L for PRX nanosuspensions) and dissolution rate as compared to the pure PRX (p < 0.05). Orally administered PRX nanosuspension (AUC 0-t is 49.26 ± 4.29 μg/mL × h) significantly improved the bioavailability of PRX (AUC 0-t is 28.40 ± 12.11 μg/mL × h). The anti-inflammatory effect of PRX nanosuspension was also investigated in rabbits and it was observed that PRX nanosuspension treatment significantly improved the inhibition of COX-2 and NFκB expression as compared to the PRX treatment (p < 0.05). Conclusions The results in this study indicate that PRX nanosuspension is a promising nanomedicine for enhancing the anti-inflammatory activity of PRX and has a high potential for the treatment of inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.