Abstract
Hydrogel microspheres stand out in drug delivery due to their small particle size, biocompatibility and good internal stability. In this paper, pH-sensitive hydrogels are prepared by microfluidic technology for targeted drug delivery in the small intestine. A coaxial dual-channel microfluidic chip is constructed. By analyzing the effects of flow rates and three fracture stages (Rayleigh-Plateau instability crushing stage, pressure difference crushing stage and shear force crushing stage) on the size of hydrogel microspheres, the optimal control stage of the microsphere size is determined (shear force crushing stage). Based on this, the accurate control model of the hydrogel microsphere size is proposed. In addition, based on the coaxial dual channel microfluidic chip, a monolayer hydrogel microcapsule loaded with Indometacin is prepared. The core-shell hydrogel microcapsules loaded with Indometacin are prepared by an improved coaxial three channel microfluidic chip. The swelling rates of both microcapsules in simulated intestinal fluid are significantly higher than those in simulated gastric fluid. The results of in vitro simulated release experiments show that the two hydrogel microcapsules basically do not release in simulated gastric juice. In simulated intestinal fluid, single-layer hydrogel microcapsules show rapid release, while core-shell hydrogel microcapsules showed slow release. In conclusion, the alginate-based hydrogel microcapsules have good stability and pH sensitivity, and are suitable for targeted drug delivery in the small intestine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have