Abstract
Heteroatom doped porous carbon materials have great application prospects in supercapacitors. In the present study, an approach of preparing N-doped porous carbon (NPC) was proposed from porous poly(resorcinol-formaldehyde-melamine) monoliths which were prepared by high internal phase emulsion (HIPE) template. Melamine was dissolved in the external phase and copolymerized, acting as the N source and porous structure regulator to provide micropore-dominant NPCs. The structure, morphology, specific surface area (SSA), and chemical composition of the samples were systematically studied. With melamine content increasing, N-doping content in NPC increased while the SSA of NPC increased at first and then decreased. When the content of N is 8.42 wt%, the obtained NPC showed the highest SSA of about 1670 m2 g−1. Furthermore, high N doping content could improve the electronic conductivity and provide additional pseudocapacitance of NPC. Under the combined influences of proper N content and high porosity, the prepared NPC electrodes revealed excellent specific capacitance (228.0 F g−1 at 1.0 A g−1), favorable circling stability, and prominent rate capability in a three-electrode system with 6 M KOH solution as the electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.